Exercise 2.3.7

Consider the following boundary value problem (if necessary, see Section 2.4.1):

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} \quad \text{with} \quad \frac{\partial u}{\partial x}(0,t) = 0, \ \frac{\partial u}{\partial x}(L,t) = 0, \quad \text{and} \quad u(x,0) = f(x).$$

- (a) Give a one-sentence physical interpretation of this problem.
- (b) Solve by the method of separation of variables. First show that there are no separated solutions which exponentially grow in time. [*Hint:* The answer is

$$u(x,t) = A_0 + \sum_{n=1}^{\infty} A_n e^{-\lambda_n k t} \cos \frac{n\pi x}{L}.$$

What is λ_n ?

(c) Show that the initial condition, u(x, 0) = f(x), is satisfied if

$$f(x) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L}.$$

- (d) Using Exercise 2.3.6, solve for A_0 and A_n $(n \ge 1)$.
- (e) What happens to the temperature distribution as $t \to \infty$? Show that it approaches the steady-state temperature distribution (see Section 1.4).

Solution

Part (a)

The PDE is the governing equation for the temperature in a one-dimensional rod that is homogeneous and has constant cross-sectional area. The boundary conditions indicate that the rod is insulated at the x = 0 and x = L ends. Initially the temperature distribution in the rod is u(x, 0) = f(x).

Part (b)

The heat equation and its associated boundary conditions are linear and homogeneous, so the method of separation of variables can be applied. Assume a product solution of the form u(x,t) = X(x)T(t) and substitute it into the PDE

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} \quad \rightarrow \quad \frac{\partial}{\partial t} [X(x)T(t)] = k \frac{\partial^2}{\partial x^2} [X(x)T(t)]$$

and the boundary conditions.

$$\begin{array}{lll} \frac{\partial u}{\partial x}(0,t)=0 & \rightarrow & X'(0)T(t)=0 & \rightarrow & X'(0)=0\\ \frac{\partial u}{\partial x}(L,t)=0 & \rightarrow & X'(L)T(t)=0 & \rightarrow & X'(L)=0 \end{array}$$

Now separate variables in the PDE.

$$X\frac{dT}{dt} = kT\frac{d^2X}{dx^2}$$

Divide both sides by kX(x)T(t). Note that the final answer for u will be the same regardless which side k is on. Constants are normally grouped with t.

$$\underbrace{\frac{1}{kT}\frac{dT}{dt}}_{\text{function of }t} = \underbrace{\frac{1}{X}\frac{d^2X}{dx^2}}_{\text{function of }x}$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ .

$$\frac{1}{kT}\frac{dT}{dt} = \frac{1}{X}\frac{d^2X}{dx^2} = \lambda$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs—one in x and one in t.

$$\frac{1}{kT}\frac{dT}{dt} = \lambda$$
$$\frac{1}{X}\frac{d^2X}{dx^2} = \lambda$$

Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda = \alpha^2$. The ODE for X becomes

$$\frac{d^2X}{dx^2} = \alpha^2 X$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$X(x) = C_1 \cosh \alpha x + C_2 \sinh \alpha x$$

Take a derivative with respect to x.

$$X'(x) = \alpha(C_1 \sinh \alpha x + C_2 \cosh \alpha x)$$

Apply the boundary conditions now to determine C_1 and C_2 .

$$X'(0) = \alpha(C_2) = 0$$

$$X'(L) = \alpha(C_1 \sinh \alpha L + C_2 \cosh \alpha L) = 0$$

The first equation implies that $C_2 = 0$, so the second equation reduces to $C_1 \alpha \sinh \alpha L = 0$. Because hyperbolic sine is not oscillatory, C_1 must be zero for the equation to be satisfied. This results in the trivial solution X(x) = 0, which means there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda = 0$. The ODE for X becomes

$$\frac{d^2X}{dx^2} = 0.$$

The general solution is obtained by integrating both sides with respect to x twice.

$$\frac{dX}{dx} = C_3$$

www.stemjock.com

Apply the boundary conditions now.

$$X'(0) = C_3 = 0$$

 $X'(L) = C_3 = 0$

Consequently,

$$\frac{dX}{dx} = 0.$$

Integrate both sides with respect to x once more.

$$X(x) = C_4$$

Zero is an eigenvalue because X(x) is not zero. The eigenfunction associated with it is $X_0(x) = 1$. Solve the ODE for T now with $\lambda = 0$.

$$\frac{dT}{dt} = 0 \quad \rightarrow \quad T_0(t) = \text{constant}$$

Suppose thirdly that λ is negative: $\lambda = -\beta^2$. The ODE for X becomes

$$\frac{d^2X}{dx^2} = -\beta^2 X.$$

The general solution is written in terms of sine and cosine.

$$X(x) = C_5 \cos\beta x + C_6 \sin\beta x$$

Take a derivative of it with respect to x.

$$X'(x) = \beta(-C_5 \sin \beta x + C_6 \cos \beta x)$$

Apply the boundary conditions now to determine C_5 and C_6 .

$$X'(0) = \beta(C_6) = 0$$

$$X'(L) = \beta(-C_5 \sin \beta L + C_6 \cos \beta L) = 0$$

The first equation implies that $C_6 = 0$, so the second equation reduces to $-C_5\beta\sin\beta L = 0$. To avoid the trivial solution, we insist that $C_5 \neq 0$. Then

$$-\beta \sin \beta L = 0$$

$$\sin \beta L = 0$$

$$\beta L = n\pi, \quad n = 1, 2, \dots$$

$$\beta_n = \frac{n\pi}{L}.$$

There are negative eigenvalues $\lambda = -n^2 \pi^2/L^2$, and the eigenfunctions associated with them are

$$X(x) = C_5 \cos \beta x + C_6 \sin \beta x$$

= $C_5 \cos \beta x \rightarrow X_n(x) = \cos \frac{n\pi x}{L}$.

www.stemjock.com

n only takes on the values it does because negative integers result in redundant values for λ . With this formula for λ , the ODE for T becomes

$$\frac{1}{kT}\frac{dT}{dt} = -\frac{n^2\pi^2}{L^2}$$

Multiply both sides by kT.

$$\frac{dT}{dt} = -\frac{kn^2\pi^2}{L^2}T$$

The general solution is written in terms of the exponential function.

$$T(t) = C_7 \exp\left(-\frac{kn^2\pi^2}{L^2}t\right) \quad \rightarrow \quad T_n(t) = \exp\left(-\frac{kn^2\pi^2}{L^2}t\right)$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X_n(x)T_n(t)$ over all the eigenvalues.

$$u(x,t) = A_0 + \sum_{n=1}^{\infty} A_n \exp\left(-\frac{kn^2\pi^2}{L^2}t\right) \cos\frac{n\pi x}{L}$$

Part (c)

Apply the initial condition u(x,0) = f(x) to determine A_0 and A_n .

$$u(x,0) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L} = f(x)$$
(1)

Part (d)

To find A_0 , integrate both sides of equation (1) with respect to x from 0 to x.

$$\int_0^L \left(A_0 + \sum_{n=1}^\infty A_n \cos \frac{n\pi x}{L} \right) dx = \int_0^L f(x) \, dx$$

Split up the integral on the left into two and bring the constants in front.

$$A_0 \int_0^L dx + \sum_{n=1}^\infty A_n \underbrace{\int_0^L \cos \frac{n\pi x}{L} \, dx}_{= 0} = \int_0^L f(x) \, dx$$

Consequently,

$$A_0 L = \int_0^L f(x) \, dx$$
$$A_0 = \frac{1}{L} \int_0^L f(x) \, dx.$$

To find A_n , multiply both sides of equation (1) by $\cos(m\pi x/L)$, where m is an integer,

$$A_0 \cos \frac{m\pi x}{L} + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L} \cos \frac{m\pi x}{L} = f(x) \cos \frac{m\pi x}{L}$$

www.stemjock.com

and then integrate both sides with respect to x from 0 to L.

$$\int_0^L \left(A_0 \cos \frac{m\pi x}{L} + \sum_{n=1}^\infty A_n \cos \frac{n\pi x}{L} \cos \frac{m\pi x}{L} \right) dx = \int_0^L f(x) \cos \frac{m\pi x}{L} dx$$

Split up the integral on the left into two and bring the constants in front.

$$\underbrace{A_0 \int_0^L \cos \frac{m\pi x}{L} dx}_{= 0} + \sum_{n=1}^\infty A_n \int_0^L \cos \frac{n\pi x}{L} \cos \frac{m\pi x}{L} dx = \int_0^L f(x) \cos \frac{m\pi x}{L} dx$$

Because the cosine functions are orthogonal, the remaining integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the one where n = m.

$$A_n \int_0^L \cos^2 \frac{n\pi x}{L} \, dx = \int_0^L f(x) \cos \frac{n\pi x}{L} \, dx$$

Consequently,

$$A_n\left(\frac{L}{2}\right) = \int_0^L f(x)\cos\frac{n\pi x}{L} \, dx$$
$$A_n = \frac{2}{L} \int_0^L f(x)\cos\frac{n\pi x}{L} \, dx.$$

Part (e)

The temperature distribution approaches equilibrium as $t \to \infty$.

$$\lim_{t \to \infty} u(x,t) = \lim_{t \to \infty} \left[A_0 + \sum_{n=1}^{\infty} A_n \exp\left(-\frac{kn^2\pi^2}{L^2}t\right) \cos\frac{n\pi x}{L} \right]$$
$$= A_0$$
$$= \frac{1}{L} \int_0^L f(x) \, dx$$

In particular, the equilibrium temperature distribution is the average of the initial temperature distribution.