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Exercise 2.3.7

Consider the following boundary value problem (if necessary, see Section 2.4.1):

∂u

∂t
= k

∂2u

∂x2
with

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, and u(x, 0) = f(x).

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there are no separated
solutions which exponentially grow in time. [Hint: The answer is

u(x, t) = A0 +
∞∑
n=1

Ane
−λnkt cos

nπx

L
.

]

What is λn?

(c) Show that the initial condition, u(x, 0) = f(x), is satisfied if

f(x) = A0 +
∞∑
n=1

An cos
nπx

L
.

(d) Using Exercise 2.3.6, solve for A0 and An (n ≥ 1).

(e) What happens to the temperature distribution as t→∞? Show that it approaches the
steady-state temperature distribution (see Section 1.4).

Solution

Part (a)

The PDE is the governing equation for the temperature in a one-dimensional rod that is
homogeneous and has constant cross-sectional area. The boundary conditions indicate that the
rod is insulated at the x = 0 and x = L ends. Initially the temperature distribution in the rod is
u(x, 0) = f(x).

Part (b)

The heat equation and its associated boundary conditions are linear and homogeneous, so the
method of separation of variables can be applied. Assume a product solution of the form
u(x, t) = X(x)T (t) and substitute it into the PDE

∂u

∂t
= k

∂2u

∂x2
→ ∂

∂t
[X(x)T (t)] = k

∂2

∂x2
[X(x)T (t)]

and the boundary conditions.

∂u

∂x
(0, t) = 0 → X ′(0)T (t) = 0 → X ′(0) = 0

∂u

∂x
(L, t) = 0 → X ′(L)T (t) = 0 → X ′(L) = 0
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Now separate variables in the PDE.

X
dT

dt
= kT

d2X

dx2

Divide both sides by kX(x)T (t). Note that the final answer for u will be the same regardless
which side k is on. Constants are normally grouped with t.

1

kT

dT

dt︸ ︷︷ ︸
function of t

=
1

X

d2X

dx2︸ ︷︷ ︸
function of x

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

1

kT

dT

dt
=

1

X

d2X

dx2
= λ

As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in x and one in t.

1

kT

dT

dt
= λ

1

X

d2X

dx2
= λ


Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the
solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: λ = α2.
The ODE for X becomes

d2X

dx2
= α2X.

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C1 coshαx+ C2 sinhαx

Take a derivative with respect to x.

X ′(x) = α(C1 sinhαx+ C2 coshαx)

Apply the boundary conditions now to determine C1 and C2.

X ′(0) = α(C2) = 0

X ′(L) = α(C1 sinhαL+ C2 coshαL) = 0

The first equation implies that C2 = 0, so the second equation reduces to C1α sinhαL = 0.
Because hyperbolic sine is not oscillatory, C1 must be zero for the equation to be satisfied. This
results in the trivial solution X(x) = 0, which means there are no positive eigenvalues. Suppose
secondly that λ is zero: λ = 0. The ODE for X becomes

d2X

dx2
= 0.

The general solution is obtained by integrating both sides with respect to x twice.

dX

dx
= C3
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Apply the boundary conditions now.

X ′(0) = C3 = 0

X ′(L) = C3 = 0

Consequently,
dX

dx
= 0.

Integrate both sides with respect to x once more.

X(x) = C4

Zero is an eigenvalue because X(x) is not zero. The eigenfunction associated with it is X0(x) = 1.
Solve the ODE for T now with λ = 0.

dT

dt
= 0 → T0(t) = constant

Suppose thirdly that λ is negative: λ = −β2. The ODE for X becomes

d2X

dx2
= −β2X.

The general solution is written in terms of sine and cosine.

X(x) = C5 cosβx+ C6 sinβx

Take a derivative of it with respect to x.

X ′(x) = β(−C5 sinβx+ C6 cosβx)

Apply the boundary conditions now to determine C5 and C6.

X ′(0) = β(C6) = 0

X ′(L) = β(−C5 sinβL+ C6 cosβL) = 0

The first equation implies that C6 = 0, so the second equation reduces to −C5β sinβL = 0. To
avoid the trivial solution, we insist that C5 6= 0. Then

−β sinβL = 0

sinβL = 0

βL = nπ, n = 1, 2, . . .

βn =
nπ

L
.

There are negative eigenvalues λ = −n2π2/L2, and the eigenfunctions associated with them are

X(x) = C5 cosβx+ C6 sinβx

= C5 cosβx → Xn(x) = cos
nπx

L
.
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n only takes on the values it does because negative integers result in redundant values for λ. With
this formula for λ, the ODE for T becomes

1

kT

dT

dt
= −n

2π2

L2
.

Multiply both sides by kT .
dT

dt
= −kn

2π2

L2
T

The general solution is written in terms of the exponential function.

T (t) = C7 exp

(
−kn

2π2

L2
t

)
→ Tn(t) = exp

(
−kn

2π2

L2
t

)
According to the principle of superposition, the general solution to the PDE for u is a linear
combination of Xn(x)Tn(t) over all the eigenvalues.

u(x, t) = A0 +

∞∑
n=1

An exp

(
−kn

2π2

L2
t

)
cos

nπx

L

Part (c)

Apply the initial condition u(x, 0) = f(x) to determine A0 and An.

u(x, 0) = A0 +
∞∑
n=1

An cos
nπx

L
= f(x) (1)

Part (d)

To find A0, integrate both sides of equation (1) with respect to x from 0 to x.

ˆ L

0

(
A0 +

∞∑
n=1

An cos
nπx

L

)
dx =

ˆ L

0
f(x) dx

Split up the integral on the left into two and bring the constants in front.

A0

ˆ L

0
dx+

∞∑
n=1

An

ˆ L

0
cos

nπx

L
dx︸ ︷︷ ︸

= 0

=

ˆ L

0
f(x) dx

Consequently,

A0L =

ˆ L

0
f(x) dx

A0 =
1

L

ˆ L

0
f(x) dx.

To find An, multiply both sides of equation (1) by cos(mπx/L), where m is an integer,

A0 cos
mπx

L
+

∞∑
n=1

An cos
nπx

L
cos

mπx

L
= f(x) cos

mπx

L
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and then integrate both sides with respect to x from 0 to L.

ˆ L

0

(
A0 cos

mπx

L
+
∞∑
n=1

An cos
nπx

L
cos

mπx

L

)
dx =

ˆ L

0
f(x) cos

mπx

L
dx

Split up the integral on the left into two and bring the constants in front.

A0

ˆ L

0
cos

mπx

L
dx︸ ︷︷ ︸

= 0

+
∞∑
n=1

An

ˆ L

0
cos

nπx

L
cos

mπx

L
dx =

ˆ L

0
f(x) cos

mπx

L
dx

Because the cosine functions are orthogonal, the remaining integral on the left is zero if n 6= m.
As a result, every term in the infinite series vanishes except for the one where n = m.

An

ˆ L

0
cos2

nπx

L
dx =

ˆ L

0
f(x) cos

nπx

L
dx

Consequently,

An

(
L

2

)
=

ˆ L

0
f(x) cos

nπx

L
dx

An =
2

L

ˆ L

0
f(x) cos

nπx

L
dx.

Part (e)

The temperature distribution approaches equilibrium as t→∞.

lim
t→∞

u(x, t) = lim
t→∞

[
A0 +

∞∑
n=1

An exp

(
−kn

2π2

L2
t

)
cos

nπx

L

]
= A0

=
1

L

ˆ L

0
f(x) dx

In particular, the equilibrium temperature distribution is the average of the initial temperature
distribution.
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